Similarly, various aryl-substituted N-aryl-N'-2-thiazolylguanidines and their hydrochlorides were prepared (see Table II).

TABLE II								
N-Aryl-N'-2-(4-phenylthiazolyl)guanidines								
PhN NHC(=NH)NHR								
		Mp,		HCl	HCl			
No.	R	°C	$Formula^{a}$	Mp, °C	$formula^a$			
1	$o\operatorname{-MeC_6H_4}$	146	$\mathrm{C_{17}H_{16}N_4S}$	193	$\mathrm{C_{17}H_{17}CiN_4S}$			
2	m-MeC ₆ H ₄	142	$\mathrm{C}_{17}\mathrm{H}_{16}\mathrm{N}_4\mathrm{S}$	130 - 131	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{ClN_4S}$			
3	$p-MeC_6H_4$	142	$\mathrm{C_{17}H_{16}N_4S}$	187	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{ClN_4S}$			
4	$o-\mathrm{OMeC_6H_4}$	142	$\mathrm{C}_{17}\mathrm{H}_{16}\mathrm{N}_4\mathrm{OS}$	185 - 186	$C_{17}H_{17}ClN_4OS$			
5	m-OMeC ₆ H ₄	143	$\mathrm{C}_{17}\mathrm{H}_{16}\mathrm{N}_4\mathrm{OS}$	179 - 180	$C_{17}H_{17}ClN_4OS$			
6	p-OMeC ₆ H ₄	144	$\mathrm{C}_{17}\mathrm{H}_{16}\mathrm{N}_4\mathrm{OS}$	183	$C_{17}H_{17}ClN_4OS$			
7	p-OEtC ₆ H ₄	145	$\mathrm{C}_{18}\mathrm{H}_{18}\mathrm{N}_4\mathrm{OS}$	125	$C_{18}H_{19}ClN_4OS$			
8	$p ext{-}\mathrm{ClC}_6\mathrm{H}_4$	147	$\mathrm{C_{16}H_{13}ClN_4S}$	134 - 135	$\mathrm{C_{16}H_{14}Cl_2N_4S}$			
^a See footnote <i>a</i> . Table I								

See footnote a, Table I.

Polyiodo Derivatives of Anisidine Isomers

FRANCIS B. ALVEY AND CHARLES H. JARBOE

Medicinal Chemistry Section, Department of Pharmacology, University of Louisville, School of Medicine, Louisville, Kentucky 40202

Received July 11, 1968

Iodinated aromatic compounds are useful diagnostic agents because of their X-ray absorbtivity and their stability which minimizes generation of iodide ion.¹ We have prepared some tri- and tetraiodoanisidine derivatives for use as intermediates in the synthesis of potential radiopaque agents by treating potassium iodide with polyacetoxymercuri-N-acetylanisidines.² These polyiodo compounds are 70-80% in iodine, a level comparing favorably to that in currently used radiodiagnostic agents.³

Experimental Section⁴

Acetoxymercuration of the N-Acetylanisidines.---A ground mixture of 4.1 g (0.025 mole) N-acetyl-p-anisidine⁵ and 32.0 g (0.100 mole) of Hg(OAc)₂ was heated in an open glass vessel in a 115-130° oil bath for 40 min. A shield was used. The resulting pink viscous liquid was treated at 80° with 50 ml of H₂O to yield 0.9 g (3.0%) of a white powder, mp 250-260° dec (from AcOH- H_2O). On the basis of subsequent iodination reactions, the product was tetraacetoxymercuri-N-acetyl-p-anisidine. Evaporation of the filtrate to 10 ml gave 3.0 g of a second white powder, mp 180-200° dec (from AcOH-H2O). On the basis of subsequent iodination reactions, the product was a triacetoxymercuri-N-acetvl-p-anisidine.

It was possible to prepare the tetraacetoxymercuri derivative in 83% yield (crude) by heating for 1 hr at 130° a molar ratio of 5:1 Hg(OAc)₂-N-acetyl-p-anisidine.

The tetraacetoxymercuri derivatives of N-acetyl-o- and -manisidine were prepared similarly with the 5:1 molar ratio and the more severe reaction conditions. Table I (footnotes d and e) give properties.

Polyiodo-N-acetylanisidines.-Over a period of 45 min, a solution of 0.91 g (0.0040 mole) of I_2 and 1.72 g (0.012 mole) of KI in 25 ml of H₂O was added dropwise to a refluxing, stirred suspension of 0.85 g (0.00071 mole) of tetraacetoxymercuri-N-

TABLE I POLYIODO ANISIDINES

Isomer	Acetylated	Mp, °C	Yield,ª %	Formula ^g
p	Yes	271	80	$C_9H_7I_4NO_2$
p^{c}	Yes	$258 - 259^{b}$	88	$C_9H_8I_3NO_2$
m^{d}	Yes	266^{b}	75	$\mathrm{C_9H_7I_4NO_2}$
00	Yes	278-279%	74	$C_9H_7I_4NO_2$
0	No	149 - 151	357	$C_7H_5I_4NO$
0°	No	132 - 133		$C_7H_6I_3NO^h$

^a Crude yields based on acetoxymercuri precursor except where noted. ^b Melts with decomposition. ^c Particular triiodo isomer not determined. ^d Acetoxymercuri precursor obtained in 53% yield, mp 224–233° dec (from AcOH–H₂O). • Acetoxymercuri The precursor obtained in 83% yield, mp 238–240° dec (from AcOH– H_2O). ^f Yield based on N-acetyl precusor. ^g All compounds were analyzed for I. ^h I: calcd, 75.94; found, 76.28.

acetyl-p-anisidine in 100 ml of H2O. Reaction was continued for 30 min after addition. On cooling, the product precipitated. It was filtered and washed with dilute KI solution and then H₂O to give 0.38 g (80%) of tetraiodo-N-acetyl-p-anisidine, mp 271° dec (from 95% EtOH). Anal. (C₉H₁I₄NÕ₂) I. Tetraiodo-N-acetyl-o-anisidine, tetraiodo-N-acetyl-m-anisidine,

and a triiodo-N-acetyl-p-anisidine were prepared essentially as above. See Table I.

Tetraiodo-o-anisidine and a Triiodo-o-anisidine.-To a solution of 4.0 g (0.0060 mole) of tetraiodo-N-acetyl-o-anisidine in 400 ml of 96% H_2SO_4 , 164 ml of H_2O was added dropwise with stirring and cooling to keep the temperature below 60°. After addition, the solution was heated rapidly to 125° and at once was cooled to room temperature when 1.32 g (35%) of tetraiodo-o-auisidine separated. It was filtered on glass wool and washed (dilute NaHCO₃, H₂O), mp 149-151° (from MeOH). Anal. (C₇H₅I₄NO) I.

The filtrate was poured onto crushed ice and 0.38 g of a triiodo-o-anisidine separated, the structure of which was not determined; mp 132-133° (from MeOH). Anal. (C7H6I3NO) I: caled, 75.94; found, 76.28.

Some Sulfonamide Derivatives of Cyclohexane¹

YOSHIO UENO, SHOJI TAKEMURA, KENJI OZAWA, AND SHIGEO KOMATSU

Faculty of Pharmacy, Kinki University, Kowakae, Higashi-Osaka, Osaka-fu, Japan

Received June 17, 1968

In continuation of our studies on reactions of N-halosulfonamides,² the reaction of N,N-dibromo-4-nitrobenzenesulfonamide with cyclohexene was investigated; trans-2-bromo-1-(4-nitrobenzenesulfonamido)cyclohexane (I) was the major product. Some compounds (III–V) having substituents other than bromine were synthesized starting from I via N-(4-nitrobenzenesulfonyl)cyclohexenimine (II) and reduced catalytically to corresponding sulfanilamide derivatives (VI-IX).

Experimental Section³

N,N-Dibromo-4-nitrobenzenesulfonamide.-4-Nitrobenzenesulfonamide (20.2 g) was dissolved in a solution of NaOH (8 g)in H₂O (200 ml) and Br₂ (36 g) was added dropwise with stirring. The crystals that separated were filtered off, washed with H₂O, and dried, mp 163-164° dec. The yield was 34 g (94.5%). A

⁽¹⁾ V. H. Wallingford, J. Am. Pharm. Assoc., 42, 721 (1953).

⁽²⁾ M. Ragno, Gazz. Chim. Ital., 70, 420 (1940); Chem. Abstr., 35, 3242 (1941).

⁽³⁾ P. K. Knoefel in "Drill's Pharmacology in Medicine," J. R. DiPalma, Ed., 3rd ed, McGraw-Hill Book Co., Inc., New York, N. Y., 1965, p 1429.
 (4) Where analyses are indicated only by symbols of elements, analytical

results obtained for those elements were within $\pm 0.4\%$ of theoretical values. Analyses were performed by Micro Tech Laboratories, Skokie, Ill. Melting points were taken in capillary tubes and are uncorrected.

⁽⁵⁾ N. D. Cheronis and J. B. Entriken, "Semimicro Qualitative Organic Analysis," Thomas Crowell Co., New York, N. Y., 1947, p 404.

⁽¹⁾ Part IX of a series entitled Reaction of N-Haloamide. Part VIII:

<sup>Chem. Pharm. Bull. (Tokyo), in press.
(2) Y. Ueno, S. Takemura, Y. Ando, and H. Terauchi,</sup> *ibid.*, 15, 1198, 1322, 1328 (1967).

⁽³⁾ All melting points were uncorrected and determined using a W. Büchi melting point determination apparatus. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.